摘要: |
本研究利用非结构网格有限体积海洋模型FVCOM(Finite-Volume Coastal Ocean Model)、MDO(Mellor-Donelan-Oey)波浪模型以及可分层的植被波耗散参数化方案,通过对比有无红树林工况评估红树林的波浪衰减能力,研究了不同形态的红树林在高水位与低水位情况下的消波能力,分析了植株密度对红树林消波能力的影响。结果表明,红树林的消波系数与林带宽度呈非线性正相关,与水深的关系则与红树结构有关。以白骨壤(Avicennia marina)为代表的A型植株形态在低水位下的消波系数极大值为67.9%,高水位下则能够达到94.4%;以红海榄(Rhizophora stylosa)为代表的B型植株形态的消波系数在低水位和高水位的极大值分别为90.6%、89.4%;以角果木(Ceriops tagal)为代表的C型植株形态的消波能力在高低水位区别不大。植株密度的增加能提高红树林消波系数上限,还能使得红树林消波系数对林带宽度的变化更为敏感,减小达到消波系数极大值所需要的林带宽度。在保护现有的红树林生态系统或建立新的红树林综合减灾防护系统时,应注意不同植株结构红树林的消波能力差异,考虑植株密度对红树林消波能力的影响。本研究提出了科学可靠的红树林消波数值模拟方法,可以为红树林的保护及修复提供支撑。 |
关键词: 海洋物理学 波浪衰减 数值模拟 红树林植株形态 植株密度 |
DOI:10.3969/J.ISSN.2095-4972.2023.02.010 |
|
基金项目:国家重点研发计划(2017YFA0604903);国家自然科学基金(41806132) |
|
Numerical simulation on the effects of mangrove morphology and planting density on wave attenuation capability |
ZHU Junning,SONG Dehai,CHEN Guangcheng,WU Wen,BAO Xianwen |
(Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China;Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China;Third Institute of Oceanography, MNR, Xiamen 361005, China) |
Abstract: |
In this study, a coupled model based on unstructured-grid, primitive-equation, Finite Volume Community Ocean Model (FVCOM), the Mellor-Donelan-Oey (MDO) wave model and a stratified vegetation wave dissipation parameterization scheme is developed to study the mangrove wave attenuation capability. By comparing the scenarios with and without mangroves, the wave attenuation rate (Ar) is computed to study the wave attenuation capabilities of different mangrove morphologies under high and low water levels, and also to analyze the effect of plant density on their wave attenuation capabilities. It shows that Ar is nonlinearly and positively correlated with the width of the forests. The relationship between Ar and water depth is related to the structure of mangroves. For A-type mangrove (e.g., Avicennia marina), the maximum Ar at low and high water level is 67.9% and 94.4%, respectively. The maximum Ar of the B-type mangrove (e.g., Rhizophora stylosa) are 90.6% and 89.4% at low and high water-levels, respectively, while the WAR of the C-type mangrove (e.g., Ceriops tagal) is not significantly different at high and low water levels. The study also found that an increase in plant density can increase the upper limit of Ar. It makes the Ar more sensitive to the changes of forest width and the forest width is thus reduced to reach the maximum Ar. The study shows that the performances of wave attenuation by different mangrove morphologies should be considered in the conservation of mangrove ecosystems. |
Key words: marine physics wave attenuation numerical simulation mangrove morphology plant density |